This is a blog about twisty puzzles themselves. I aim to explain the way they work and the way they are solved so that the reader should eventually gain a deep understanding of the way these puzzles work, a thing which is sadly lacking in many of today's speedcubers. I also hope to put some of the methods I use or have discovered on here. Some of the material here might be original research and some may not; it's safe to assume that I've created anything that I explicitly credit to me, but I don't necessarily claim authorship of all that I write here.

The first couple posts will probably concern themselves with the mathematics of the cube, to get a feel for why things work as they do. Although I'm considering majoring in Math I'm not going to be too formal or theoretical, so anyone with an early high school understanding of mathematics (or better) should be fine. Then after that I'll start to go into the more interesting stuff, or perhaps some more complicated mathematics. Don't think of this as a kind of textbook where every section builds on the one before it: the material in these opening sections should be enough to understand all or most of the rest. If you are confused about something you can always ask me, or the friendly folks on speedsolving.com.

So what's with this name "Notes on Twisty Puzzles"? It is based off of the title of an early Rubik's Cube treatise by David Singmaster which he called "Notes on Rubik's Magic Cube" and which was a great leap ahead in understanding how the standard 3x3x3 cube works. Despite not having read his books about the Cube I do recommend that you read them if you have a chance, as I've heard they are excellent.

Finally, all opinions expressed herein, and all writing, are mine unless stated otherwise. Opinions can and do change, so if you have a problem with anything here feel free to tell me about it.

Have fun, and good luck!

No comments: